Let $a$ and $n$ be positive integers.Prove that $a^n-1$ is prime only if $a=2$ and $n=p$ is prime.
Proof:\begin{equation} a^n-1^n=(a-1)(a^{n-1}+a^{n-2}+\cdots+a+1)\end{equation}So
\begin{equation} a=2\end{equation}So\begin{equation} a^n-1=2^n-1\end{equation}If $n$ is not prime,then $n=p_1p_2,p_1,p_2>1$.Then \begin{equation} 2^n-1=2^{p_1p_2}-1=(2^{p_1})^{p_2}-1=(2^{p_1}-1)\Delta\end{equation}$\Delta>1$.So $2^n-1$ become a composite number,which leads to absurdity.So $n$ is a prime.